ILA.PIV.sCMOS CLHS Camera

The ILA.PIV.sCMOS CLHS is our flagship when your application is though and demands are high:

- interframing time as low as 200 ns
- Brand new CamLink HS:
 - Effective bandwidth of nearly 1,2 GB/s
 - Cable length up to 10 km possible
- 16 bit dynamic range and
- >60% quantum efficiency

Now, you are prepared for every PIV task at hand.

To facilitate camera setup a remote focus control is directly integrated: Adjust your Canon EF lens precisely via our intuitive software without touching your aligned camera anymore.

Data Sheet

ILA_5150 GmbH Kurbrunnenstraße 24 52066 Aachen - Germany Fon +49(0)241 95789-814 Fax +49(0)241 95789-585 info@ila5150.de www.lla5150.de

ILA.PIV.sCMOS CLHS Camera

General

power supply power consumption

weight

operating temp.

operating humidity

storage temp range

optical interface

CE / FCC certified

* F-mount available upon request

12..24 VDC (±10%)

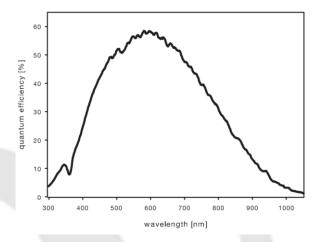
32 W max. (typ. 19W @ 20 °C)

1000 g

+10 °C .. +40 °C

10% .. 80% (non-condensing)

-10 °C .. +60 °C


Canon EF lens mount*

yes

Frame rate table³

Typical resolution	rs	gs
2560 x 2160	100	50
2560 x 1024	212	105
1920 x 1080	201	100

Quantum efficiency [%]

 $^{^{1}\,\}mathrm{The}$ readout noise values are given as median (med) and root mean square (rms) values, due to the different noise models, which can be used for evaluation.

Image Sensor

type of sensor scientific CMOS (sCMOS)

image sensor CIS2521

resolution (h x v) 2560 x 2160 pixel
pixel size (h x v) 6.5 μm x 6.5 μm
sensor size 16.6 mm x 14.0 mm

diagonal 21.8 mm

shutter modes Rolling (rs) and global (gs)

dynamic range30 000 : 1 (86.9 dB)quantum efficiency>60% @ peakspectral range370 nm .. 1100 nm

anti blooming factor >10 000

MTF 76.9 lp/mm (theoretical)

fullwell capacity 30 000 e

readout noise¹ $2.5_{rms} / 2.2_{med} e^{-}$ @ (gs, fsc²)

dark current⁴ @ 7 °C $< 0.6 e^{-}/pixels/s (rs)$ $< 0.9 e^{-}/pixels/s (gs)$ DSNU $< 3.9 e^{-} rms (gs, fsc^{2})$

PRNU < 0.34%

Camera

non linearity

data interface

trigger output signals

frame rate 100fps @ 2560 x 2610 pixel (rs, fsc²)

50fps @ 2560 x 2160 pixel (gs, fsc²)

301p3 @ 2300 x 2100 pixel (g3, 13c)

 $\begin{array}{lll} \mbox{exposure / shutter} & 500 \ \mbox{$\mu s ... 2 s (rs)$} \\ \mbox{time} & 10 \ \mbox{$\mu s ... 100 ms (gs)$} \\ \mbox{interframing time} & \mbox{as low as 200 ns} \end{array}$

dynamic range A/D² 16 bit

A/D conversion factor 0.46 e⁻/count pixel scan rate 286 MHz (fsc²) pixel data rate 572 Mpixel/s

region of interest Selectable in steps of 16 hor / 1 vert Px

< 0.6%

cooling method

Peltier with forced air (fan); +7°C stabilized up to 27°C ambient

trigger input signals frame or sequence trigger

exposure, busy

Camera Link HS (Single-F2,1X1,S10)

² Raw data without filtering.

 $^{^{}m 3}$ Max. fps with centered ROI.

 $^{^4}$ The high dynamic signal is simultaneously converted at high and low gain by two 11 bit A/D converters and the two 11 bit values are sophistically merged into one 16 bit value